B Rumus Perkalian Sinus dan Kosinus 1. Perkalian Cosinus dan Cosinus Dari rumus jumlah dan selisih dua sudut, dapat diperoleh rumus sebagai berikut cos (A + B) = cos A cos B - sin A sin B .. (1) cos (A - B) = cos A cos B + sin A sin B .. (2) tambahkan persamaan (1) dan (2) maka akan didapat : cos (A + B) + cos (A - B) = 2 cos A cos B
kelompok21. dilla mulyaning tyas2. asif arya3. sandi fajar4 eka asti aulia5. naeli ilfatuzzahra6. zuyyinatun niswah
Rumusrumus trigonometri SMA kelas 11 serta contoh soal dan Pembahasan. Rumus-rumus trigonometri yang akan kita bahas adalah rumus-rumus pada materi pelajaran matematika minat kelas 11 yang meliputi:
Gunakanrumus perkalian cos yang ada pada uraian di atas yaitu 2 cos A cos B = cos (A + B) + cos (A - B). Jawaban : 2 cos 75° cos 15° = cos (75 +15)° + cos (75 - 15)° = cos 90° + cos 60° = 0 + ½ = ½. Itu dia kumpulan rumus dan soal-soal trigonometri yang bisa kamu pelajari dan pahami.
Rumusturunan trigonometri; Mencari Persamaan garis jika diketahui dua titik; Rumus Identitas Trigonometri; Rumus-rumus Trigonometri tan (a+b) dan tan (a-b) Rumus-rumus Trigonometri sin (a+b) dan sin (a-b) Contoh soal dan pembahasan PANGKAT; Sifat Sifat Pangkat; Sifat Sifat Pangkat dan Akar; Rumus-rumus Trigonometri cos (a+b) dan cos (a-b)
SYjF. Cos A + Cos B, an important cosine function identity in trigonometry, is used to find the sum of values of cosine function for angles A and B. It is one of the sum to product formulas used to represent the sum of cosine function for angles A and B into their product form. The result for Cos A + Cos B is given as 2 cos ½ A + B cos ½ A - B. Let us understand the Cos A + Cos B formula and its proof in detail using solved examples. What is Cos A + Cos B Identity in Trigonometry? The trigonometric identity Cos A + Cos B is used to represent the sum of the cosine of angles A and B, Cos A + Cos B in the product form using the compound angles A + B and A - B. We will study the Cos A + Cos B formula in detail in the following sections. Cos A + Cos B Sum to Product Formula The Cos A + Cos B sum to product formula in trigonometry for angles A and B is given as, Cos A + Cos B = 2 cos ½ A + B cos ½ A - B Here, A and B are angles, and A + B and A - B are their compound angles. Proof of Cos A + Cos B Formula We can give the proof of Cos A + Cos B trigonometric formula using the expansion of cosA + B and cosA - B formula. As we stated in the previous section, we write Cos A + Cos B = 2 cos ½ A + B cos ½ A - B. Let us assume that α + β = A and α - β = B. We know, using trigonometric identities, 2α = A + B ⇒ α = A + B/2 2β = A - B ⇒ β = A - B/2 ½ [cosα + β + cosα - β] = cos α cos β, for any angles α and β. [cosα + β + cosα - β] = 2 cos α cos β ⇒ Cos A + Cos B = 2 cos ½A + B cos ½A - B Hence, proved. How to Apply Cos A + Cos B? We can apply the Cos A + Cos B formula as a sum to the product identity to make the calculation easier when it is difficult to find the cosine of given angles. Let us understand its application using the example of cos 60º + cos 30º. We will solve the value of the given expression by 2 methods, using the formula and by directly applying the values, and compare the results. Have a look at the below-given steps. Compare the angles A and B with the given expression, cos 60º + cos 30º. Here, A = 60º, B = 30º. Solving using the expansion of the formula Cos A + Cos B, given as, Cos A + Cos B = 2 cos ½ A + B cos ½ A - B, we get, Cos 60º + Cos 30º = 2 cos ½ 60º + 30º cos ½ 60º - 30º = 2 cos 45º cos 15º = 2 1/√2 √3 + 1/2√2 = √3 + 1/2. Also, we know that cos 60º + cos 30º = 1/2 + √3/2 = 1 + √3/2. Hence, the result is verified. ☛ Related Topics on Cos A + Cos B Trigonometric Chart sin cos tan Law of Sines Law of Cosines Trigonometric Functions Let us have a look at a few examples to understand the concept of cos A + cos B better. FAQs on Cos A + Cos B What is Cos A + Cos B in Trigonometry? Cos A + Cos B is an identity or trigonometric formula, used in representing the sum of cosine of angles A and B, Cos A + Cos B in the product form using the compound angles A + B and A - B. Here, A and B are angles. What is the Formula of Cos A + Cos B? Cos A + Cos B formula, for two angles A and B, can be given as, Cos A + Cos B = 2 cos ½ A + B cos ½ A - B. Here, A + B and A - B are compound angles. What is the Expansion of Cos A + Cos B in Trigonometry? The expansion of Cos A + Cos B formula is given as, Cos A + Cos B = 2 cos ½ A + B cos ½ A - B, where A and B are any given angles. How to Prove the Expansion of Cos A + Cos B Formula? The expansion of Cos A + Cos B, given as Cos A + Cos B = 2 cos ½ A + B cos ½ A - B, can be proved using the 2 cos α cos β product identity in trigonometry. Click here to check the detailed proof of the formula. How to Use Cos A + Cos B Formula? To use Cos A + Cos B formula in a given expression, compare the expansion, Cos A + Cos B = 2 cos ½ A + B cos ½ A - B with given expression and substitute the values of angles A and B. What is the Application of Cos A + Cos B Formula? Cos A + Cos B formula can be applied to represent the sum of cosine of angles A and B in the product form of cosine of A + B and cosine of A - B, using the formula, Cos A + Cos B = 2 cos ½ A + B cos ½ A - B.
Cos A - Cos B, an important identity in trigonometry, is used to find the difference of values of cosine function for angles A and B. It is one of the difference to product formulas used to represent the difference of cosine function for angles A and B into their product form. The result for Cos A - Cos B is given as 2 sin ½ A + B sin ½ B - A. Let us understand the Cos A - Cos B formula and its proof in detail using solved examples. 1. What is Cos A - Cos B Identity in Trigonometry? 2. Cos A - Cos B Difference to Product Formula 3. Proof of Cos A - Cos B Formula 4. How to Apply Cos A - Cos B Formula? 5. FAQs on Cos A - Cos B What is Cos A - Cos B Identity in Trigonometry? The trigonometric identity Cos A - Cos B is used to represent the difference of cosine of angles A and B, Cos A - Cos B in the product form using the compound angles A + B and A - B. We will study the Cos A - Cos B formula in detail in the following sections. Cos A - Cos B Difference to Product Formula The Cos A - Cos B difference to product formula in trigonometry for angles A and B is given as, Cos A - Cos B = - 2 sin ½ A + B sin ½ A - B or Cos A - Cos B = 2 sin ½ A + B sin ½ B - A Here, A and B are angles, and A + B and A - B are their compound angles. Proof of Cos A - Cos B Formula We can give the proof of Cos A - Cos B trigonometric formula using the expansion of cosA + B and cosA - B formula. As we stated in the previous section, we write Cos A - Cos B = 2 sin ½ A + B sin ½ B - A. Let us assume two compound angles A and B, given as A = X + Y and B = X - Y, ⇒ Solving, we get, X = A + B/2 and Y = A - B/2 We know, cosX + Y = cos X cos Y - sin X sin Y cosX - Y = cos X cos Y + sin X sin Y cosX + Y - cosX - Y = -2 sin X sin Y ⇒ Cos A - Cos B = - 2 sin ½ A + B sin ½ A - B ⇒ Cos A - Cos B = 2 sin ½ A + B sin ½ B - A Hence, proved. How to Apply Cos A - Cos B Formula? We can apply the Cos A - Cos B formula as a difference to the product identity. Let us understand its application using an example of cos 60º - cos 30º. We will solve the value of the given expression by 2 methods, using the formula and by directly applying the values, and compare the results. Have a look at the below-given steps. Compare the angles A and B with the given expression, cos 60º - cos 30º. Here, A = 60º, B = 30º. Solving using the expansion of the formula Cos A - Cos B, given as, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A, we get, Cos 60º - Cos 30º = 2 sin ½ 60º + 30º sin ½ 30º - 60º = - 2 sin 45º sin 15º = - 2 1/√2 √3 - 1/2√2 = 1 - √3/2. Also, we know that Cos 60º - Cos 30º = 1/2 - √3/2 = 1- √3/2. Hence, the result is verified. ☛ Related Topics on Cos A + Cos B Trigonometric Chart Law of Cosines sin cos tan Law of Sines Trigonometric Functions Let us have a look at a few examples to understand the concept of cos A - cos B better. FAQs on Cos A - Cos B What is Cos A - Cos B in Trigonometry? Cos A - Cos B is an identity or trigonometric formula, used in representing the difference of cosine of angles A and B, Cos A - Cos B in the product form using the compound angles A + B and A - B. Here, A and B are angles. How to Use Cos A - Cos B Formula? To use Cos A - Cos B formula in a given expression, compare the expansion, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A with given expression and substitute the values of angles A and B. What is the Formula of Cos A - Cos B? Cos A - Cos B formula, for two angles A and B, can be given as, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A. Here, A + B and A - B are compound angles. What is the Expansion of Cos A - Cos B in Trigonometry? The expansion of Cos A - Cos B formula is given as, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A, where A and B are any given angles. How to Prove the Expansion of Cos A - Cos B Formula? The expansion of Cos A - Cos B, given as Cos A - Cos B = 2 sin ½ A + B sin ½ B - A, can be proved using the 2 sin X sin Y product identity in trigonometry. Click here to check the detailed proof of the formula. What is the Application of Cos A - Cos B Formula? Cos A - Cos B formula can be applied to represent the difference of cosine of angles A and B in the product form of sine of A + B and sine of A - B, using the formula, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A.
Rumus Trigonometri Sinus Kosinus Tangen Selamat datang para pecinta Matematrick. Kali ini kita akan belajar tentang materi favorit saya waktu di sekolah, yaitu Materi matematika bab trigonometri. Inti dari trigonometri adalah mempelajari tentang panjang sisi dan besar sudut dalam segitiga. Munculnya istilah sinus, cosinus dan tangen pun sebenarnya adalah istilah untuk menyatakan perbandingan-perbandingan antar panjang sisi segitiga. Lebih lengkapnya tentang pendahuluan trigonometri bisa anda pelajari di sini Materi matematika trigonometri Berikut ini adalah materi trigonometri lanjutan, sambungan dari materi sebelumnya, yaitu Rumus/Aturan Sinus dan Cosinus A. Rumus Trigonometri Sudut Ganda 1. Rumus Sinus Sudut Ganda Dengan memanfaatkan rumus sin A + B, untuk A = B akan diperoleh sin 2A = sin A + B = sin A cos A + cos A sin A = 2 sin A cos A Sehingga didapat Rumus sin 2A = 2 sin A cos A Untuk lebih jelasnya, perhatikan contoh soal berikut ini. Contoh soal trigonometri dasar Diketahui sin A = 12/13 , di mana A di kuadran II. Dengan menggunakan rumus sudut ganda, hitunglah sin 2A. Penyelesaian b. Rumus Cosinus Sudut Ganda Dengan memanfaatkan rumus cos A + B, untuk A = B akan diperoleh cos 2A = cos A + A = cos A cos A – sin A sin A = cos² A – sin² A ……………..1 atau cos 2A = cos² A – sin² A = cos² A – 1 – cos² A = cos² A – 1 + cos² A = 2 cos² A – 1 ……………..2 atau cos 2A = cos² A – sin² A = 1 – sin² A – sin² A = 1 – 2 sin² A …………3 Dari persamaan 1, 2, dan 3 didapat rumus sebagai berikut cos 2A = cos² A – sin² Acos 2A = 2 cos² A – 1cos 2A = 1 – 2 sin² A contoh soal persamaan trigonometri sederhana Diketahui cos A = – 7/25 , di mana A dikuadran III. Dengan menggunakan rumus sudut ganda, hitunglah nilai cos 2A. Penyelesaian c. Rumus Tangen Sudut Ganda Dengan memanfaatkan rumus tan A + B, untuk A = B akan diperoleh tan 2A = tan A + A = tan A + tan A/1 - tan A = 2 tan A/1 - tan² A Rumus tan 2A = 2 tan A/1 - tan² A Perhatikan contoh soal berikut ini. contoh soal persamaan trigonometri Jika α sudut lancip dan sin α = 4/5 , hitunglah tan 2α. Penyelesaian B. Rumus Perkalian Sinus dan Kosinus 1. Perkalian Cosinus dan Cosinus Dari rumus jumlah dan selisih dua sudut, dapat diperoleh rumus sebagai berikut cos A + B = cos A cos B – sin A sin B ......... 1 cos A – B = cos A cos B + sin A sin B ......... 2 tambahkan persamaan 1 dan 2 maka akan didapat cos A + B + cos A – B = 2 cos A cos B Rumus 2 cos A cos B = cos A + B + cos A – B Pelajarilah contoh soal berikut untuk lebih memahami rumus perkalian cosinus dan cosinus. Contoh soal perkalian trigonometri Nyatakan 2 cos 75° cos 15° ke dalam bentuk jumlah atau selisih, kemudian tentukan hasilnya. Penyelesaian 2 cos 75° cos 15° = cos 75 + 15° + cos 75 – 15° = cos 90° + cos 60° = 0 + 0,5 = 0,5 2. Perkalian Sinus dan Sinus Dari rumus jumlah dan selisih dua sudut, dapat diperoleh rumus sebagai berikut cos A + B = cos A cos B – sin A sin B ............ 1 cos A – B = cos A cos B + sin A sin B .............2 Kedua ruas dikurangkan, akan didapat cos A + B – cos A –B = –2 sin A sin B atau 2 sin A sin B = cos A – B – cos A + B Rumus 2 sin A sin B = cos A – B – cos A + B Sekarang, simaklah contoh soal berikut. Contoh soal persamaan trigonometri sederhana Tentukan nilai x dari persamaan trigonometri berikut 2 sin 75 sin 15 = x. Penyelesaian 2 sin 75 sin 15 = cos 75 – 15 – cos 75 + 15 = cos 60 – cos 90 = 0,5 – 0 = 0,5 Jadi nilai x = 0,5. 3. Perkalian Sinus dan Cosinus Dari rumus jumlah dan selisih dua sudut, dapat diperoleh rumus sebagai berikut. sin A + B = sin A cos B + cos A sin B ............ 1 sin A – B = sin A cos B – cos A sin B ............ 2 dari persamaan 1 dan 2 dijumlahkan akan didapat sin A + B + sin A – B = 2 sin A cos B atau 2 sin A cos B = sin A + B + sin A – B Rumus 2 sin A cos B = sin A + B + sin A – B Perhatikan contoh soal berikut Contoh soal perkalian trigonometri sederhana Nyatakan sin 105° cos 15° ke dalam bentuk jumlah atau selisih sinus, kemudian tentukan hasilnya. Penyelesaian C. Rumus Jumlah dan Selisih pada Sinus dan Kosinus 1. Rumus Penjumlahan Cosinus Berdasarkan rumus perkalian cosinus, diperoleh hubungan penjumlahan dalam cosinus yaitu sebagai berikut. 2 cos A cos B = cos A + B + cos A – B Misalkan Selanjutnya, kedua persamaan itu disubstitusikan. 2 cos A cos B = cos A + B + cos A – B 2 cos 1/2 α + β cos 1/2 α – β = cos α + cos β atau Perhatikan contoh soal berikut. Contoh soal Sederhanakan cos 100° + cos 20°. Penyelesaian cos 100° + cos 20° = 2 cos 1/2100 + 20° cos 1/2100 – 20° = 2 cos 60° cos 40° = 2 ⋅ 1/2 cos 40° = cos 40° 2. Rumus Pengurangan Cosinus Dari rumus 2 sin A sin B = cos A – B – cos A + B, dengan memisalkan A + B = α dan A – B = β, terdapat rumus Perhatikan contoh soal berikut. Contoh soal Sederhanakan cos 35° – cos 25°. Penyelesaian cos 35° – cos 25° = –2 sin 1/2 35 + 25° sin 1/2 35 – 25° = –2 sin 30° sin 5° = –2 ⋅ 1/2 sin 5° = – sin 5° 3. Rumus Penjumlahan dan Pengurangan Sinus Dari rumus 2 sin A cos B = sin A + B + sin A – B, dengan memisalkan A + B = α dan A – B = β, maka didapat rumus Agar lebih memahami tentang penjumlahan dan pengurangan sinus, pelajarilah penggunaannya dalam contoh soal berikut. Contoh soal Sederhanakan sin 315° – sin 15°. Penyelesaian sin 315° – sin 15° = 2⋅ cos 1/2 315 + 15° ⋅ sin 1/2 315 – 15° = 2⋅ cos 165° ⋅ sin 150° = 2⋅ cos 165 ⋅ 1/2 = cos 165° 4. Rumus Penjumlahan dan Pengurangan Tangen Perhatikan penggunaan rumus penjumlahan pada contoh soal berikut. Contoh soal Tentukan nilai tan 165° + tan 75° Penyelesaian
A idéia deste e do próximo 'rascunho' é apresentar duas maneiras distintas de se deduzir fórmulas do tipocosa - b = cos a cos b + sen a sen bEm outras palavras deduziremos fórmulas que calculam as funções trigonométricas da soma e da diferença de dois arcos cujas funções são conhecidas. 1ª Maneira Antes de mais nada, lembremos que a distância entre dois pontos do plano x,y e z,w é dada pord² = x - z² + y - w então no cÃrculo de raio 1 os pontos P e Q figura 1. tais quei medida do arco AP = a ii medida do arco AQ = b Figura P = cos a, sen a e Q = cos b, sen b, a distância d entre os pontos P e Q é dada pord² = cos a - cos b² + sen a - sen b² =cos²a - 2cos a cos b + cos²b + sen²a - 2sen a sen b + sen²b =cos²a + sen²a + cos²b + sen²b - 2cos a cos b + sen a sen b =1 + 1 - 2cos a cos b + sen a sen b =2 - 2cos a cos b + sen a sen b.Mudemos agora nosso sistema de coordenadas girando os eixos de um ângulo b em torno da origem figura 2. Figura novo sistema de coordenadas, o ponto Q tem coordendas 1 e 0, ou seja, Q = 1,0. Além disso, o ponto P tem coordenadas cosa - b e sena - b, isto é, P = cosa-b, sena-b. Calculando novamente a distância entre os pontos P e Q, obtemosd² = [1 - cosa - b]² + [0 - sena - b]² =1 - 2cosa - b + [cos²a - b + sen²a - b] =2 - 2cosa - b.Igualando os valores de d², obtemos2 - 2cos a cos b + sen a sen b = 2 - 2cosa - b,I cosa - b = cos a cos b + sen a sen 'b' por '-b' e usando o fato de cos-b = cos b e sen-b = - sen b, na igualdade acima, obtemosII cosa + b = cos a cos b - sen a sen A partir das duas igualdades acima - I e II -, deduza quea sena + b = sen a cos b + sen b cos ab sena - b = sen a cos b - sen b cos a2 Usando I e II, a igualdade tg x = sen x/cos x e o exercÃcio 1, deduza que tga - b = tg a - tg b/1 + tg a tg b e tg a + b = tg a + tg b/1 - tg a tg b.PS. Coloque suas soluçãoões em 'comentários'.
2sinAcosB is a trigonometric formula that can be derived using the compound angle formulas of the sine function. The formula for 2sinAcosB is given by, 2sinAcosB = sinA + B + sinA - B. We can use this formula to solve various mathematical problems including simplification of trigonometric expressions and calculation of integrals and derivatives. We have four such trigonometric formulas which are 2sinAsinB, 2cosAcosB, 2sinAcosB, and 2cosAsinB. In this article, we will explore the concept of 2sinAcosB and derive its formula using trigonometric formulas of the sine function. We will also find out how to apply the 2sinAcosB formula and solve a few examples for a better understanding of its application. 1. What is 2SinACosB in Trigonometry? 2. 2SinACosB Formula 3. Proof of 2SinACosB Formula 4. How to Apply 2sinAcosB Formula? 5. FAQs on 2SinACosB What is 2SinACosB in Trigonometry? 2sinAcosB is one of the important trigonometric formulas in trigonometry. Its formula can be used to solve various trigonometric problems. It is used to simplify trigonometric expressions and solve complex integrals and derivatives. The formula of 2sinAcosB is derived by taking the sum of the compound angle formulas angle sum and angle difference of the sine function, that is, sinA - B and sinA + B. We can apply the formula of 2sinAcosB when the sum and difference of two angles A and B are known. 2SinACosB Formula The formula for the 2sinAcosB identity in trigonometry is 2sinAcosB = sinA + B + sinA - B. We can derive this formula by adding the sine function formulas sinA+B and sinA-B. We can use the formula of 2sinAcosB when pair values of the angles A and B or their sum and difference A + B and A - B are known. If the two angles A and B become equal, then we get the formula for the sin2A identity in trigonometry. The image given below shows the formula for 2sinAcosB If we divide both sides of the formula 2sinAcosB = sinA + B + sinA - B by 2, we get the formula for sinAcosB as sinAcosB = 1/2 [sinA + B + sinA - B]. Proof of 2SinACosB Formula Now that we know that the formula for 2sinAcosB is equal to sinA + B + sinA - B, we will derive this using the compound angle formulas of the sine function. We will use the following formulas to derive the formula of 2sinAcosB sinA + B = sinAcosB + sinBcosA - 1 sinA - B = sinAcosB - sinBcosA - 2 Adding the above two formulas 1 and 2, we have sinA + B + sinA - B = sinAcosB + sinBcosA + sinAcosB - sinBcosA ⇒ sinA + B + sinA - B = sinAcosB + sinBcosA + sinAcosB - sinBcosA ⇒ sinA + B + sinA - B = sinAcosB + sinAcosB - [Cancelling out sinBcosA and -sinBcosA] ⇒ sinA + B + sinA - B = 2sinAcosB Hence, we have derived the formula of 2sinAcosB using the angle sum and angle difference formulas of the sine function. How to Apply 2sinAcosB Formula? In this section, we will understand the application of the 2sinAcosb formula in simplifying trigonometric expressions and calculating complex integration and differentiation problems. Let us solve a few examples below stepwise to understand how to apply the formula of 2sinAcosB. Example 1 Find the derivative of 2 sinx cos2x using the 2sinAcosB formula. Solution To find the derivative of 2 sinx cos2x, substitute A = x and B = 2x into the formula 2sinAcosB = sinA + B + sinA - B to simplify and express it in terms of sine function. Therefore, we have 2 sinx cos2x = sinx - 2x + sinx + 2x = sin-x + sin3x = -sinx + sin3x - [Because sin-A = -sinA] Now, the derivative of 2 sinx cos2x is given by, d2 sinx cos2x/dx = d-sinx + sin3x/dx = d-sinx/dx + dsin3x/dx = -dsinx/dx + 3cos3x = -cosx + 3cosx Answer The derivative of 2 sinx cos2x is -cosx + 3cosx. Example 2 Find the value of 2 sin135° cos45°. Solution We know values of trigonometric functions at specific angles including 0°, 30°, 45°, 60°, and 90°. So, we will use the 2sinAcosB formula to find the value of the expression 2 sin135° cos45°. 2 sin135° cos45° = sin135° + 45° + sin135° - 45° = sin180° + sin90° = 0 + 1 = 1 Answer 2 sin135° cos45° = 1 Important Notes on 2sinAcosB The formula of 2sinAcosB is 2sinAcosB = sinA + B + sinA - B. We can derive the formula using sinA + B and sinA - B. The formula for 2sinAcosB is used to simplify and determine values of trigonometric expressions, integrals and derivatives. ☛ Related Topics Cot3x Cot2x Antiderivative Rules FAQs on 2SinACosB What is 2SinACosB in Trigonometry? 2sinAcosB is one of the important trigonometric formulas in trigonometry. The value of 2sinAcosB is equal to sinA + B + sinA - B, for angles A and B. This formula can be derived using the compound angle formulas of the sine function. What is the Formula of 2sinAcosB? The formula for the 2sinAcosB identity in trigonometry is 2sinAcosB = sinA + B + sinA - B. We can use the formula of 2sinAcosB when pair values of the angles A and B or their sum and difference A + B and A - B are known. How to Prove 2sinAcosB Formula? We can derive the formula of 2sinAcosB by adding the sine function formulas sinA+B and sinA-B. We have sinA + B + sinA - B = sinAcosB + sinBcosA + sinAcosB - sinBcosA which implies 2sinAcosB = sinA + B + sinA - B. What is 2SinACosB Equal to? 2sinAcosB is equal to the sum of sinA + B and sinA - B, that is, 2sinAcosB is equal to sinA + B + sinA - B. What are the Applications of 2sinAcosB? Some of the common applications of 2sinAcosB are simplifying and determining values of trigonometric expressions, integrals, and derivatives.
rumus sin a cos b